Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
2.
Nat Med ; 30(3): 772-784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238616

RESUMEN

There is a pressing need for allogeneic chimeric antigen receptor (CAR)-immune cell therapies that are safe, effective and affordable. We conducted a phase 1/2 trial of cord blood-derived natural killer (NK) cells expressing anti-CD19 chimeric antigen receptor and interleukin-15 (CAR19/IL-15) in 37 patients with CD19+ B cell malignancies. The primary objectives were safety and efficacy, defined as day 30 overall response (OR). Secondary objectives included day 100 response, progression-free survival, overall survival and CAR19/IL-15 NK cell persistence. No notable toxicities such as cytokine release syndrome, neurotoxicity or graft-versus-host disease were observed. The day 30 and day 100 OR rates were 48.6% for both. The 1-year overall survival and progression-free survival were 68% and 32%, respectively. Patients who achieved OR had higher levels and longer persistence of CAR-NK cells. Receiving CAR-NK cells from a cord blood unit (CBU) with nucleated red blood cells ≤ 8 × 107 and a collection-to-cryopreservation time ≤ 24 h was the most significant predictor for superior outcome. NK cells from these optimal CBUs were highly functional and enriched in effector-related genes. In contrast, NK cells from suboptimal CBUs had upregulation of inflammation, hypoxia and cellular stress programs. Finally, using multiple mouse models, we confirmed the superior antitumor activity of CAR/IL-15 NK cells from optimal CBUs in vivo. These findings uncover new features of CAR-NK cell biology and underscore the importance of donor selection for allogeneic cell therapies. ClinicalTrials.gov identifier: NCT03056339 .


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Ratones , Humanos , Receptores Quiméricos de Antígenos/genética , Interleucina-15 , Células Asesinas Naturales , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD19 , Proteínas Adaptadoras Transductoras de Señales
3.
Transplant Cell Ther ; 30(2): 203.e1-203.e9, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042257

RESUMEN

Relapse is the major cause of failure of high-dose chemotherapy (HDC) with autologous stem cell transplantation (ASCT) for B cell non-Hodgkin lymphomas (B-NHL). Improvement strategies include use in combination with effective immunotherapies. We hypothesized that the combination of rituximab/HDC/ASCT with expanded cord blood (CB)-derived natural killer (NK) cells is safe and active in B-NHL. Patients with B-NHL age 15 to 70 years and appropriate ASCT candidates were eligible for the study. The CB units were selected without considering HLA match with the recipient. The CB NK cells were expanded from day -19 to day -5. Treatment included rituximab on days -13 and -7, BEAM (carmustine/etoposide/cytarabine/melphalan) on days -13 to -7, lenalidomide on days -7 to -2, CB NK infusion (108/kg) on day -5, and ASCT (day 0). The primary endpoint was 30-day treatment-related mortality (TRM); secondary endpoints included relapse-free survival (RFS), overall survival (OS), and persistence of CB NK cells. We enrolled 20 patients. CB NK cells were expanded a median of 1552-fold with >98% purity and >96% viability. We saw no adverse events attributable to the CB NK cells and 0% 30-day TRM. At median follow-up of 47 months, the RFS and OS rates were 53% and 74%, respectively. CB NK cells were detectable in blood for 2 weeks, independent of HLA-mismatch status. CD16 expression in donor NK cells was correlated favorably with outcome, and homozygosity for the high-affinity CD16 variant (158 V/V) in CB, but not recipient, NK cells was correlated with better outcomes. Our data indicate that the combination of expanded and highly purified CB-derived NK cells with HDC/ASCT for B-NHL is safe. CD16 expression in donor NK cells, particularly if homozygous for the high-affinity CD16 variant, was correlated with better outcomes.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma de Células B , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Rituximab/uso terapéutico , Sangre Fetal , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Trasplante Autólogo , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/etiología , Células Asesinas Naturales
4.
Sci Adv ; 9(30): eadd6997, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37494448

RESUMEN

Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is promising, with early-phase clinical studies showing encouraging responses. However, the transcriptional signatures that control the fate of CAR-NK cells after infusion and factors that influence tumor control remain poorly understood. We performed single-cell RNA sequencing and mass cytometry to study the heterogeneity of CAR-NK cells and their in vivo evolution after adoptive transfer, from the phase of tumor control to relapse. Using a preclinical model of noncurative lymphoma and samples from a responder and a nonresponder patient treated with CAR19/IL-15 NK cells, we observed the emergence of NK cell clusters with distinct patterns of activation, function, and metabolic signature associated with different phases of in vivo evolution and tumor control. Interaction with the highly metabolically active tumor resulted in loss of metabolic fitness in NK cells that could be partly overcome by incorporation of IL-15 in the CAR construct.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Citocinas/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales , Tratamiento Basado en Trasplante de Células y Tejidos
5.
Cancer Biol Med ; 20(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37282627

RESUMEN

Prostate cancer, one of the most frequently occurring cancers in men, is a heterogeneous disease involving multiple cell types within tumors. This tumor heterogeneity at least partly results from genomic instability leading to sub-clonal cellular differentiation. The differentiated cell populations originate from a small subset of cells with tumor-initiating and stem-like properties. These cells, termed prostate cancer stem cells (PCSCs), play crucial roles in disease progression, drug resistance, and relapse. This review discusses the origin, hierarchy, and plasticity of PCSCs; methods for isolation and enrichment of PCSCs; and various cellular and metabolic signaling pathways involved in PCSC induction and maintenance, as well as therapeutic targeting.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Diferenciación Celular , Transducción de Señal , Progresión de la Enfermedad , Células Madre Neoplásicas/patología
6.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37261908

RESUMEN

Sepsis remains a leading cause of death for humans and currently has no pathogenesis-specific therapy. Hampered progress is partly due to a lack of insight into deep mechanistic processes. In the past decade, deciphering the functions of small noncoding miRNAs in sepsis pathogenesis became a dynamic research topic. To screen for new miRNA targets for sepsis therapeutics, we used samples for miRNA array analysis of PBMCs from patients with sepsis and control individuals, blood samples from 2 cohorts of patients with sepsis, and multiple animal models: mouse cecum ligation puncture-induced (CLP-induced) sepsis, mouse viral miRNA challenge, and baboon Gram+ and Gram- sepsis models. miR-93-5p met the criteria for a therapeutic target, as it was overexpressed in baboons that died early after induction of sepsis, was downregulated in patients who survived after sepsis, and correlated with negative clinical prognosticators for sepsis. Therapeutically, inhibition of miR-93-5p prolonged the overall survival of mice with CLP-induced sepsis, with a stronger effect in older mice. Mechanistically, anti-miR-93-5p therapy reduced inflammatory monocytes and increased circulating effector memory T cells, especially the CD4+ subset. AGO2 IP in miR-93-KO T cells identified important regulatory receptors, such as CD28, as direct miR-93-5p target genes. In conclusion, miR-93-5p is a potential therapeutic target in sepsis through the regulation of both innate and adaptive immunity, with possibly a greater benefit for elderly patients than for young patients.


Asunto(s)
MicroARNs , Sepsis , Humanos , Ratones , Animales , Anciano , Antagomirs , MicroARNs/genética , Inmunidad Adaptativa , Sepsis/patología
7.
Lancet Haematol ; 10(1): e24-e34, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36402146

RESUMEN

BACKGROUND: Ponatinib and blinatumomab are effective therapies in patients with Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukaemia, and their combination might be a promising treatment option. In this study, we aimed to evaluate this chemotherapy-free strategy. METHODS: We did a single-centre, single-arm, phase 2 study at the University of Texas MD Anderson Cancer Center, Houston, TX, USA, in patients aged 18 years or older with newly diagnosed or relapsed or refractory Ph-positive acute lymphoblastic leukaemia or chronic myeloid leukaemia in lymphoid blast phase. Patients with an ECOG performance status of 2 or less who had a total bilirubin concentration two-times the upper limit of normal (ULN) or less (≤2·4 mg/dL), alanine aminotransferase and aspartate aminotransferase concentration no more than three-times the ULN, and serum lipase and amylase concentrations no more than three-times the ULN were eligible for inclusion. Ponatinib 30 mg orally and continuous intravenous blinatumomab 28 µg over 24 h (for 28 days each cycle) were given in combination for up to five 42-day cycles, followed by ponatinib monotherapy. Patients received 12 doses of intrathecal chemotherapy as CNS prophylaxis. The primary endpoints were complete molecular response (defined as absence of a detectable BCR-ABL1 transcript by PCR at a sensitivity of 0·01%) in patients with newly diagnosed disease and overall response in patients with relapsed or refractory disease or chronic myeloid leukaemia in lymphoid blast phase. All assessments were done according to the intention-to-treat principle. The trial completed its original target accrual and was amended on March 23, 2022, to enrol an additional 30 patients, thus increasing the sample size to 90 patients. The trial is registered with ClinicalTrials.gov, NCT03263572, and it is ongoing. FINDINGS: Between Feb 6, 2018, to May 6, 2022, 60 (83%) of 72 patients assessed were enrolled and received ponatinib and blinatumomab (40 [67%] patients had newly diagnosed Ph-positive acute lymphoblastic leukaemia, 14 [23%] had relapsed or refractory Ph-positive acute lymphoblastic leukaemia, and six [10%] had chronic myeloid leukaemia in lymphoid blast phase). 32 (53%) patients were men and 28 (47%) were women; 51 (85%) patients were White or Hispanic; and the median age of participants was 51 years (IQR 36-68). The median duration of follow-up for the entire cohort was 16 months (IQR 11-24). Of patients with newly diagnosed Ph-positive acute lymphoblastic leukaemia, 33 (87%) of 38 evaluable patients had a complete molecular response. 12 (92%) of 13 evaluable patients with relapsed or refractory Ph-positive acute lymphoblastic leukaemia had an overall response. 11 (79%) had a complete molecular response. Five (83%) of six patients with chronic myeloid leukaemia in lymphoid blast phase had an overall response. Two (33%) had a complete molecular response. The most common grade 3-4 adverse events that occurred in more than 5% of patients were infection (22 [37%] patients), increased amylase or lipase concentration (five [8%] patients), increased alanine aminotransferase or aspartate aminotransferase concentration (four [7%] patients), pain (four [7%] patients), and hypertension (four [7%] patients). One (2%) patient discontinued blinatumomab due to tremor. Three (5%) patients discontinued ponatinib secondary to cerebrovascular ischaemia, portal vein thrombosis, and coronary artery stenosis in one patient each. No treatment-related deaths were observed. INTERPRETATION: The chemotherapy-free combination of ponatinib and blinatumomab resulted in high rates of complete molecular response in patients with newly diagnosed and relapsed or refractory Ph-positive acute lymphoblastic leukaemia. Patients with newly diagnosed Ph-positive acute lymphoblastic leukaemia could be spared the toxicities associated with chemotherapy and the need for allogeneic haematopoietic stem-cell transplantation in first response. FUNDING: Takeda Oncology and Amgen.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Cromosoma Filadelfia , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/etiología , Alanina Transaminasa/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
8.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36543374

RESUMEN

BACKGROUND: B cells play a pivotal role in regulating the immune response. The induction of B cell-mediated immunosuppressive function requires B cell activating signals. However, the mechanisms by which activated B cells mediate T-cell suppression are not fully understood. METHODS: We investigated the potential contribution of metabolic activity of activated B cells to T-cell suppression by performing in vitro experiments and by analyzing clinical samples using mass cytometry and single-cell RNA sequencing. RESULTS: Here we show that following activation, B cells acquire an immunoregulatory phenotype and promote T-cell suppression by metabolic competition. Activated B cells induced hypoxia in T cells in a cell-cell contact dependent manner by consuming more oxygen via an increase in their oxidative phosphorylation (OXPHOS). Moreover, activated B cells deprived T cells of glucose and produced lactic acid through their high glycolytic activity. Activated B cells thus inhibited the mammalian target of rapamycin pathway in T cells, resulting in suppression of T-cell cytokine production and proliferation. Finally, we confirmed the presence of tumor-associated B cells with high glycolytic and OXPHOS activities in patients with melanoma, associated with poor response to immune checkpoint blockade therapy. CONCLUSIONS: We have revealed for the first time the immunomodulatory effects of the metabolic activity of activated B cells and their possible role in suppressing antitumor T-cell responses. These findings add novel insights into immunometabolism and have important implications for cancer immunotherapy.


Asunto(s)
Linfocitos B , Linfocitos T , Inmunosupresores/farmacología , Sirolimus , Inmunoterapia
9.
Front Immunol ; 13: 1018047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36203567

RESUMEN

The current global platelet supply is often insufficient to meet all the transfusion needs of patients, in particular for those with alloimmune thrombocytopenia. To address this issue, we have developed a strategy employing a combination of approaches to achieve more efficient production of functional megakaryocytes (MKs) and platelets collected from cord blood (CB)-derived CD34+ hematopoietic cells. This strategy is based on ex-vivo expansion and differentiation of MKs in the presence of bone marrow niche-mimicking mesenchymal stem cells (MSCs), together with two other key components: (1) To enhance MK polyploidization, we used the potent pharmacological Rho-associated coiled-coil kinase (ROCK) inhibitor, KD045, resulting in liberation of increased numbers of functional platelets both in-vitro and in-vivo; (2) To evade HLA class I T-cell-driven killing of these expanded MKs, we employed CRISPR-Cas9-mediated ß-2 microglobulin (ß2M) gene knockout (KO). We found that coculturing with MSCs and MK-lineage-specific cytokines significantly increased MK expansion. This was further increased by ROCK inhibition, which induced MK polyploidization and platelet production. Additionally, ex-vivo treatment of MKs with KD045 resulted in significantly higher levels of engraftment and donor chimerism in a mouse model of thrombocytopenia. Finally, ß2M KO allowed MKs to evade killing by allogeneic T-cells. Overall, our approaches offer a novel, readily translatable roadmap for producing adult donor-independent platelet products for a variety of clinical indications.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trombocitopenia , Animales , Citocinas/farmacología , Sangre Fetal , Megacariocitos , Ratones , Linfocitos T , Quinasas Asociadas a rho
10.
Nat Med ; 28(10): 2133-2144, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36175679

RESUMEN

Trogocytosis is an active process that transfers surface material from targeted to effector cells. Using multiple in vivo tumor models and clinical data, we report that chimeric antigen receptor (CAR) activation in natural killer (NK) cells promoted transfer of the CAR cognate antigen from tumor to NK cells, resulting in (1) lower tumor antigen density, thus impairing the ability of CAR-NK cells to engage with their target, and (2) induced self-recognition and continuous CAR-mediated engagement, resulting in fratricide of trogocytic antigen-expressing NK cells (NKTROG+) and NK cell hyporesponsiveness. This phenomenon could be offset by a dual-CAR system incorporating both an activating CAR against the cognate tumor antigen and an NK self-recognizing inhibitory CAR that transferred a 'don't kill me' signal to NK cells upon engagement with their TROG+ siblings. This system prevented trogocytic antigen-mediated fratricide, while sparing activating CAR signaling against the tumor antigen, and resulted in enhanced CAR-NK cell activity.


Asunto(s)
Receptores Quiméricos de Antígenos , Antígenos de Neoplasias , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Receptores Quiméricos de Antígenos/metabolismo , Trogocitosis , Escape del Tumor
11.
Leukemia ; 36(9): 2228-2232, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35941212

RESUMEN

Richter's Syndrome (RS) is an aggressive transformation of CLL, usually clonally-related diffuse large B-cell lymphoma (DLBCL), characterized by frequent TP53 mutations, intrinsic chemoresistance and poor survival. TP53-independent treatments are needed. We conducted a single center, phase 2, investigator-initiated study of high dose blinatumomab (maximum 112 mcg/d after initial, weekly dose escalation), NCT03121534, given for an 8-week induction and 4-week consolidation cycle. Responses were assessed by Lugano 2014 criteria. Serial multi-parameter flow cytometry from blood was performed to identify patient-specific biomarkers for response. Nine patients were treated. Patients had received a median of 4 and 2 prior therapies for CLL and RS, respectively. Five of 9 had del(17p) and 100% had complex karyotype. Four patients had reduction in nodal disease, including one durable complete response lasting >1 y. Treatment was well tolerated, with no grade >3 cytokine release syndrome and 1 case of grade 3, reversible neurotoxicity. Immunophenotyping demonstrated the majority of patients expressed multiple immune checkpoints, especially PD1, TIM3 and TIGIT. The patient who achieved CR had the lowest levels of immune checkpoint expression. Simultaneous targeting with immune checkpoint blockade, especially PD1 inhibition, which has already demonstrated single-agent efficacy in RS, could achieve synergistic killing and enhance outcomes.


Asunto(s)
Anticuerpos Biespecíficos , Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Anticuerpos Biespecíficos/administración & dosificación , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Mutación
12.
Blood ; 139(12): 1908-1919, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34914826

RESUMEN

Patients with B-lineage acute lymphoblastic leukemia (ALL) are at high-risk for relapse after allogeneic hematopoietic cell transplantation (HCT). We conducted a single-center phase 2 study evaluating the feasibility of 4 cycles of blinatumomab administered every 3 months during the first year after HCT in an effort to mitigate relapse in high-risk ALL patients. Twenty-one of 23 enrolled patients received at least 1 cycle of blinatumomab and were included in the analysis. The median time from HCT to the first cycle of blinatumomab was 78 days (range, 44 to 105). Twelve patients (57%) completed all 4 treatment cycles. Neutropenia was the only grade 4 adverse event (19%). Rates of cytokine release (5% G1) and neurotoxicity (5% G2) were minimal. The cumulative incidence of acute graft-versus-host disease (GVHD) grades 2 to 4 and 3 to 4 were 33% and 5%, respectively; 2 cases of mild (10%) and 1 case of moderate (5%) chronic GVHD were noted. With a median follow-up of 14.3 months, the 1-year overall survival (OS), progression-free survival (PFS), and nonrelapse mortality (NRM) rates were 85%, 71%, and 0%, respectively. In a matched analysis with a contemporary cohort of 57 patients, we found no significant difference between groups regarding blinatumomab's efficacy. Correlative studies of baseline and posttreatment samples identified patients with specific T-cell profiles as "responders" or "nonresponders" to therapy. Responders had higher proportions of effector memory CD8 T-cell subsets. Nonresponders were T-cell deficient and expressed more inhibitory checkpoint molecules, including T-cell immunoglobulin and mucin domain 3 (TIM3). We found that blinatumomab postallogeneic HCT is feasible, and its benefit is dependent on the immune milieu at time of treatment. This paper is posted on ClinicalTrials.gov, study ID: NCT02807883.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Enfermedad Aguda , Anticuerpos Biespecíficos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recurrencia
13.
Adv Exp Med Biol ; 1329: 419-441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34664250

RESUMEN

Context-dependent reciprocal crosstalk between cancer and surrounding stromal cells in the tumor microenvironment is imperative for the regulation of various hallmarks of cancer. A myriad of growth factors, chemokines, and their receptors aids in the interaction between cancer cells and tumor microenvironmental components. Osteopontin is a chemokine-like protein, overexpressed in different types of cancers. Osteopontin plays a crucial role in orchestrating dialogue between cancer and stromal cells. Osteopontin, in tumor microenvironment, is produced in tumor as well as stromal cells. Tumor-derived osteopontin regulates proliferation, migration, activation, and differentiation of different types of stromal cells. Osteopontin secreted from tumor cells regulates the generation of cancer-associated fibroblasts from resident fibroblasts and mesenchymal stem cells. Osteopontin also shapes immunosuppressive tumor microenvironment by controlling regulatory T cells and tumor-associated macrophages. Moreover, secretion of osteopontin from tumor stroma has been highly documented. Stromal cell-derived osteopontin induces epithelial-to-mesenchymal transition, angiogenesis, metastasis, and cancer stem cell enrichment. Tumor- or stroma-derived osteopontin mainly functions through binding with cell surface receptors, integrins and CD44, and activates downstream signaling events like PI-3 kinase/Akt and MAPK pathways. Presumably, disrupting the communication between the tumor cells and surrounding microenvironment by targeting osteopontin-regulated signaling using specific antibodies, small-molecule inhibitors, and chemotherapeutic agents is a novel therapeutic strategy for clinical management of cancer.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Osteopontina/genética , Transducción de Señal , Células del Estroma
14.
Cell Rep ; 36(3): 109432, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34270918

RESUMEN

Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

15.
Free Radic Biol Med ; 172: 136-151, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34097996

RESUMEN

Prostate cancer (PCa) is a major cause of mortality and morbidity in men. Available therapies yield limited outcome. We explored anti-PCa activity in a polyphenol-rich fraction of Bergenia ligulata (PFBL), a plant used in Indian traditional and folk medicine for its anti-inflammatory and antineoplastic properties. PFBL constituted of about fifteen different compounds as per LCMS analysis induced apoptotic death in both androgen-dependent LNCaP and androgen-refractory PC3 and DU145 cells with little effect on NKE and WI38 cells. Further investigation revealed that PFBL mediates its function through upregulating ROS production by enhanced catalytic activity of Monoamine oxidase A (MAO-A). Notably, the differential inactivation of NRF2-antioxidant response pathway by PFBL resulted in death in PC3 versus NKE cells involving GSK-3ß activity facilitated by AKT inhibition. PFBL efficiently reduced the PC3-tumor xenograft in NOD-SCID mice alone and in synergy with Paclitaxel. Tumor tissues in PFBL-treated mice showed upregulation of similar mechanism of cell death as observed in isolated PC3 cells i.e., elevation of MAO-A catalytic activity, ROS production accompanied by activation of ß-TrCP-GSK-3ß axis of NRF2 degradation. Blood counts, liver, and splenocyte sensitivity analyses justified the PFBL safety in the healthy mice. To our knowledge this is the first report of an activity that crippled NRF2 activation both in vitro and in vivo in response to MAO-A activation. Results of this study suggest the development of a novel treatment protocol utilizing PFBL to improve therapeutic outcome for patients with aggressive PCa which claims hundreds of thousands of lives each year.


Asunto(s)
Antioxidantes , Neoplasias de la Próstata , Animales , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Monoaminooxidasa , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Polifenoles/farmacología , Neoplasias de la Próstata/tratamiento farmacológico
16.
J Clin Invest ; 131(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34138753

RESUMEN

Glioblastoma multiforme (GBM), the most aggressive brain cancer, recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. We showed that GSCs, but not normal astrocytes, are sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. Mass cytometry and single-cell RNA sequencing of primary tumor samples revealed that GBM tumor-infiltrating NK cells acquired an altered phenotype associated with impaired lytic function relative to matched peripheral blood NK cells from patients with GBM or healthy donors. We attributed this immune evasion tactic to direct cell-to-cell contact between GSCs and NK cells via αv integrin-mediated TGF-ß activation. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-ß signaling or with TGFBR2 gene-edited allogeneic NK cells prevented GSC-induced NK cell dysfunction and tumor growth. These findings reveal an important mechanism of NK cell immune evasion by GSCs and suggest the αv integrin/TGF-ß axis as a potentially useful therapeutic target in GBM.


Asunto(s)
Glioblastoma/inmunología , Integrinas/inmunología , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/inmunología , Células Madre Neoplásicas/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Femenino , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/terapia , Xenoinjertos , Humanos , Integrinas/genética , Células Asesinas Naturales/patología , Masculino , Ratones , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/genética
17.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33986022

RESUMEN

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoterapia , Células Asesinas Naturales , Leucemia , Linfoma , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Sangre/efectos de los fármacos , Sangre/inmunología , Células Cultivadas , Terapia Combinada , Citocinas/farmacología , Sangre Fetal/efectos de los fármacos , Sangre Fetal/inmunología , Inmunoterapia/métodos , Antígeno Ki-1/inmunología , Células Asesinas Naturales/inmunología , Leucemia/terapia , Linfoma/terapia , Receptores de IgG/inmunología
18.
Front Immunol ; 12: 631353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017325

RESUMEN

Acute graft-vs.-host (GVHD) disease remains a common complication of allogeneic stem cell transplantation with very poor outcomes once the disease becomes steroid refractory. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for the treatment of GVHD, but so far this strategy has had equivocal clinical efficacy. Therapies using MSCs require optimization taking advantage of the plasticity of these cells in response to different microenvironments. In this study, we aimed to optimize cord blood tissue derived MSCs (CBti MSCs) by priming them using a regimen of inflammatory cytokines. This approach led to their metabolic reprogramming with enhancement of their glycolytic capacity. Metabolically reprogrammed CBti MSCs displayed a boosted immunosuppressive potential, with superior immunomodulatory and homing properties, even after cryopreservation and thawing. Mechanistically, primed CBti MSCs significantly interfered with glycolytic switching and mTOR signaling in T cells, suppressing T cell proliferation and ensuing polarizing toward T regulatory cells. Based on these data, we generated a Good Manufacturing Process (GMP) Laboratory protocol for the production and cryopreservation of primed CBti MSCs for clinical use. Following thawing, these cryopreserved GMP-compliant primed CBti MSCs significantly improved outcomes in a xenogenic mouse model of GVHD. Our data support the concept that metabolic profiling of MSCs can be used as a surrogate for their suppressive potential in conjunction with conventional functional methods to support their therapeutic use in GVHD or other autoimmune disorders.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular/fisiología , Sangre Fetal/citología , Enfermedad Injerto contra Huésped/prevención & control , Células Madre Mesenquimatosas/metabolismo , Animales , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/inmunología , Citocinas/farmacología , Femenino , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Endogámicos NOD , Control de Calidad
19.
J Clin Oncol ; 39(24): 2710-2719, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-33929874

RESUMEN

PURPOSE: BK virus-associated hemorrhagic cystitis (BKV-HC) is a common complication of allogenic hematopoietic stem cell transplantation (AHSCT), particularly in recipients of alternative donor transplants, which are being performed in increasing numbers. BKV-HC typically results in painful hematuria, urinary obstruction, and renal dysfunction, without a definitive therapeutic option. METHODS: We performed a clinical trial (ClinicalTrials.gov identifier: NCT02479698) to assess the feasibility, safety, and efficacy of administering most closely HLA-matched third-party BKV-specific cytotoxic T lymphocytes (CTLs), generated from 26 healthy donors and banked for off-the-shelf use. The cells were infused into 59 patients who developed BKV-HC following AHSCT. Comprehensive clinical assessments and correlative studies were performed. RESULTS: Response to BKV-CTL infusion was rapid; the day 14 overall response rate was 67.7% (40 of 59 evaluable patients), which increased to 81.6% among evaluable patients at day 45 (40 of 49 evaluable patients). No patient lost a previously achieved response. There were no cases of de novo grade 3 or 4 graft-versus-host disease, graft failure, or infusion-related toxicities. BKV-CTLs were identified in patient blood samples up to 3 months postinfusion and their in vivo expansion predicted for clinical response. A matched-pair analysis revealed that, compared with standard of care, after accounting for prognostic covariate effects, treatment with BKV-CTLs resulted in higher probabilities of response at all follow-up timepoints as well as significantly lower transfusion requirement. CONCLUSION: Off-the-shelf BKV-CTLs are a safe and effective therapy for the management of patients with BKV-HC after AHSCT.


Asunto(s)
Cistitis/tratamiento farmacológico , Trastornos Hemorrágicos/tratamiento farmacológico , Linfocitos T Citotóxicos/metabolismo , Alotrasplante Compuesto Vascularizado/efectos adversos , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
20.
Front Immunol ; 12: 626098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717142

RESUMEN

Natural killer (NK) cells are innate lymphocytes recognized for their important role against tumor cells. NK cells expressing chimeric antigen receptors (CARs) have enhanced effector function against various type of cancer and are attractive contenders for the next generation of cancer immunotherapies. However, a number of factors have hindered the application of NK cells for cellular therapy, including their poor in vitro growth kinetics and relatively low starting percentages within the mononuclear cell fraction of peripheral blood or cord blood (CB). To overcome these limitations, we genetically-engineered human leukocyte antigen (HLA)-A- and HLA-B- K562 cells to enforce the expression of CD48, 4-1BBL, and membrane-bound IL-21 (mbIL21), creating a universal antigen presenting cell (uAPC) capable of stimulating their cognate receptors on NK cells. We have shown that uAPC can drive the expansion of both non-transduced (NT) and CAR-transduced CB derived NK cells by >900-fold in 2 weeks of co-culture with excellent purity (>99.9%) and without indications of senescence/exhaustion. We confirmed that uAPC-expanded research- and clinical-grade NT and CAR-transduced NK cells have higher metabolic fitness and display enhanced effector function against tumor targets compared to the corresponding cell fractions cultured without uAPCs. This novel approach allowed the expansion of highly pure GMP-grade CAR NK cells at optimal cell numbers to be used for adoptive CAR NK cell-based cancer immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptores Quiméricos de Antígenos/genética , Animales , Ingeniería Celular , Línea Celular Tumoral , Proliferación Celular , Citotoxicidad Inmunológica , Sangre Fetal , Antígenos HLA/genética , Humanos , Células K562 , Ratones , Ratones Noqueados , Receptores de Células Asesinas Naturales/metabolismo , Transcriptoma , Transducción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...